
Vol.: (0123456789)
1 3

Plant Soil 
https://doi.org/10.1007/s11104-022-05508-z

REVIEW ARTICLE

Harnessing belowground processes for sustainable 
intensification of agricultural systems

Eva Oburger  · Hannes Schmidt  · 
Christiana Staudinger 

Received: 31 January 2022 / Accepted: 18 May 2022 
© The Author(s) 2022

practices and plant breeding. Including belowground 
plant-soil-microbe interactions in our breeding efforts 
will help to select crops resilient to abiotic and biotic 
environmental stresses and ultimately enable us to 
produce sufficient food in a more sustainable agricul-
ture in the upcoming decades.
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Introduction

The increasing availability of industrial fertilizer and 
pesticides combined with the implementation of high 
yield plant varieties sparked the first Green Revolu-
tion in the middle of the twentieth century result-
ing in a massive increase in cereal yield worldwide. 
At that time, plant breeders focused on aboveground 
plant features, developing crops that would produce 
high yields under plentiful water and nutrient sup-
ply. While highly successful in parts of the world, 
with staple food yields doubling or even tripling, the 
Green Revolution brought little change to the areas 
worst affected by hunger and malnutrition (Lynch 
2019). In addition to unaffordable fertilizers, soils in 
low-income countries are often affected by limited 
nutrient availability and yields regularly suffer from 

Abstract Increasing food demand coupled with 
climate change pose a great challenge to agricul-
tural systems. In this review we summarize recent 
advances in our knowledge of how plants, together 
with their associated microbiota, shape rhizosphere 
processes. We address (molecular) mechanisms 
operating at the plant–microbe-soil interface and 
aim to link this knowledge with actual and potential 
avenues for intensifying agricultural systems, while 
at the same time reducing irrigation water, ferti-
lizer inputs and pesticide use. Combining in-depth 
knowledge about above and belowground plant traits 
will not only significantly advance our mechanistic 
understanding of involved processes but also allow 
for more informed decisions regarding agricultural 
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drought, diseases and herbivory (Lesk et  al. 2016; 
Lynch 2007; Ristaino et al. 2021; White and Broadley 
2009). To meet the growing food demand, the next 
Green Revolution will have to focus on improving 
yields on infertile soils with minimal fertilizer inputs 
(Lynch 2007). Furthermore, changing climatic condi-
tions and corresponding ecosystem responses raise 
the need for crops tolerant to various environmental 
stressors including drought, salinity as well as patho-
gen infection.

Plant species (and even varieties) are known to dif-
fer in their root resource acquisition efficiency (which 
we here define as mass unit nutrient or water taken 
up per unit root surface area) (Mori et  al. 2016) as 
well as in their internal water/nutrient use efficiency 
(Chochois et al. 2015; St Aime et al. 2021; Tron et al. 
2015) and their level of tolerance against biotic and 
abiotic stressors (Al-Tamimi et al. 2016; Gioia et al. 
2015; Oladzad et  al. 2019). These genetically deter-
mined differences are driven by the plant phenotype 
which integrates root architectural and morphological 
traits, as well as general plant metabolism including 

systemic and local immune responses (summary 
Fig.  1). In addition, these species- and genotype-
specific traits can change with plant development. 
It is well established, that growth and metabolic 
activity of plant roots can alter the physicochemi-
cal properties and the biological activity in the soil 
surrounding roots (i.e. the rhizosphere) and there-
fore, in turn, significantly affect plant growth per-
formance. Rhizosphere properties emerging from 
plant–microbe-soil interactions are of crucial impor-
tance as they ultimately determine the plants’ nutrient 
and water availability and impact pathogen infection 
as well as the establishment of symbiotic relation-
ships (Lambers et  al. 2009)(see also Fig.  1). Living 
plants interact with the soil matrix not only by tak-
ing up water and nutrients but also by actively and 
passively releasing inorganic  (H3O+,  CO2,  O2) and 
organic compounds (i.e. photosynthates and deriva-
tives, controlled release of root border cells as well 
as cell debris and sloughed-off root cap cells) into the 
soil (Oburger and Jones 2018). The zone of influence 
(i.e. rhizosphere extent) depends on the process and 

Fig. 1  Summary figure of plant traits, biotic agents and interactions shaping rhizosphere soil properties and processes and vice 
versa. Root efficiency is defined as mass unit nutrient or water taken up per unit root surface area. Created with biorender.com
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varies dynamically through space and time; however, 
the spatial extent of the rhizosphere typically does not 
exceed a few mm (e.g. Hinsinger et al. 2009; Kuzya-
kov and Razavi 2019). Even though rhizosphere pro-
cesses occur at a small scale, they shape agricultural 
productivity and influence biogeochemical element 
cycling and soil development and are consequently of 
global importance (Finzi et al. 2015). Together with 
the soil biota, roots (re-) organize particle aggrega-
tion, soil pore volume and soil pore connectivity and 
are therefore affecting the global water cycle by alter-
ing water infiltration, storage and aeration (Bengough 
2012). In addition, the continuous input of organic 
carbon (C) by roots into the soil alters size, compo-
sition and activity of the rhizosphere microbiome 
and consequently drives a wide range of processes 
and feedback loops in the rhizosphere affecting 
plant growth and plant nutrition (Hayat et  al. 2010; 
Lugtenberg and Kamilova 2009) as well as ecosys-
tem response to climate change (Classen et al. 2015; 
Langley and Hungate 2014). Roots therefore play a 
central role in C cycling and C sequestration (Dijk-
stra et al. 2021). Mediated by the soil biota, roots also 
trigger the solubilization and redistribution of nutri-
ents other than C and N between organic and inor-
ganic pools as they explore and exploit the soil (Jones 
and Oburger 2011; Oburger et  al. 2011; Vetterlein 
et al. 2020).

Understanding and harnessing plant traits and 
related rhizosphere processes involved in improved 
crop and soil health is considered a key strategy to 
sustainably intensify agricultural systems and there-
fore increase food and fodder production (de la 
Fuente Cantó et  al. 2020; Lynch 2019; Staudinger 
et  al. 2016). In the past decades, intensive research 
combined with methodological development allowed 
us to gain considerable mechanistic insights into indi-
vidual rhizosphere processes (Baveye et  al. 2018; 
Oburger and Schmidt 2016; Schnepf et  al. 2022). 
However, the focus was mostly on individual mecha-
nisms rather than on the interactions of several pro-
cesses co-occurring in the rhizosphere. Undoubtedly, 
these studies significantly advanced our knowledge 
about the plant–microbe-soil system. However, it is 
increasingly recognized that a holistic view of occur-
ring processes and their feedback loops is needed to 
further our understanding of the complex interplay of 
processes giving rise to desirable rhizosphere proper-
ties (Vetterlein et al. 2020). Ultimately this knowledge 

should help us to manage soils and crop growth in a 
more sustainable and efficient way in the future. In 
this review, we aim to summarize recent advances in 
our understanding of how plants shape rhizosphere 
processes and discuss approaches that have already 
been applied in agroecosystems or showed promising 
results in vitro. Keeping the plant perspective in focus 
of this review, we fully acknowledge the ‘holobiont 
concept’ and will discuss plant-(micro)biota interac-
tions that may lead to an ‘extended phenotype’ in the 
respective sections.

Soil structure and water availability

It is well known that increases in soil bulk density 
do not only affect the soil’s water infiltration capac-
ity but also result in changes in root morphology and 
root system architecture, with higher bulk densities 
generally resulting in thicker, shorter roots than roots 
grown in soils with lower bulk density (Correa et al. 
2019; Pandey et  al. 2021). However, growing roots 
themselves can also locally alter soil porosity and soil 
aggregation affecting aeration, water infiltration as 
well as saturated and unsaturated soil water flow. In 
turn, this can have an impact on plant growth perfor-
mance as well as on microbial abundance and activ-
ity and related biogeochemical cycles. Growing roots 
were found to displace soil particles and to locally 
increase bulk density in their close vicinity (Aravena 
et  al. 2011; Bruand et  al. 1996). Contrastingly, sev-
eral X-ray computed tomography-based 3D imaging 
studies also revealed the opposite effect reporting an 
increase in soil porosity in the rhizosphere with den-
sification only being found (if at all) at some distance 
away from the roots (Helliwell et al. 2019). Carminati 
et al. (2013) and Koebernick et al. (2019) made simi-
lar observations and attributed the higher rhizosphere 
porosity to gap formation and larger pore diameters 
caused by loose packing between the convex root 
surface and convex soil particles. In a recent study, 
Lucas et al. (2019) aimed to reconcile these contrast-
ing findings and demonstrated that soil compaction in 
the rhizosphere only occurred when macroporosity 
was low and dominated by isolated pores. However, 
the authors also observed a more porous rhizosphere 
compared to the bulk soil when roots were grown in 
soils characterized by a highly connected macropore 
system. The authors concluded that growth-driven 
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rhizosphere compaction only occurs if the initial soil 
structure does not offer sufficient volume of well-
connected macropores. Another recent study indi-
cates that the magnitude of bulk density alteration in 
vicinity of roots is dependent on the underlying soil 
texture and structural heterogeneity (Phalempin et al. 
2021) which highlights the importance of recogniz-
ing interactions and the extent of their effects between 
soil structure and root traits as a two-way system (i.e. 
changes in soil structure due to plants and changes in 
root growth due to soil structure).

Higher porosity in the rhizosphere will improve air 
permeability and increase water infiltration and satu-
rated water flow. On the other hand, root water uptake 
could be negatively affected under non-saturated or 
drying conditions (Aravena et  al. 2011). Research 
in the past decade revealed increasing evidence that 
mucilage released by the tip of growing roots or root 
hairs can alter rhizosphere soil physical and hydraulic 
properties, maintaining the connectivity of the liquid 
phase in increasingly dry conditions. Mucilage is a 
polymeric gel primarily composed of neutral and acid 
polysaccharides that is mainly released from root cap 
cells at the root tip (Carminati and Vetterlein 2013). 
Current evidence suggests that mucilage has a lower 
surface tension and a higher viscosity than water 
thereby preventing the breakup of the liquid phase 
during drying and maintaining the physical connec-
tion between the soil matrix and the root surface (Car-
minati et  al. 2017, 2013). Together with root hairs, 
mucilage is considered to be an important driver of 
soil particle aggregation and rhizosheath formation 
(i.e. layer of soil adhering to the root surface)(Gallo-
way et al. 2018) which is expected to maintain physi-
cal contact between soil and roots upon soil drying 
(Bengough 2012). While mucilage has been shown to 
keep the rhizosphere wetter than the bulk soil during 
initial soil drying, it turned hydrophobic after severe 
drought causing initial water repellence in the rhizo-
sphere upon rewetting. Changing hydraulic proper-
ties of soil not only influences its physico-chemical 
properties but most likely also soil (micro-)biota, 
especially under conditions of decreasing water avail-
ability. Increasing the connectivity between soil and 
roots was shown to improve the diffusion of nutrients 
in the soil aqueous phase during soil drying (Zare-
banadkouki et al. 2019). Furthermore, root mucilage 
may help to create heterogeneous niches for micro-
bial growth and interactions through reduced fluid 

flow relative to the soil solution (Nazari et al. 2022; 
Stewart 2003). A limitation of diffusion likely results 
in the accumulation of plant low-molecular weight 
compounds, which are preferentially released in api-
cal root zones in the mucilage layer, favoring che-
moattraction, exchange of signaling molecules and 
defense compounds, as discussed for microbial bio-
films (Flemming et al. 2016).

Besides representing an energy-rich substrate 
and sustaining aqueous phases in dry soils, it was 
recently hypothesized that root mucilage containing 
also plant-derived proteins and extra cellular DNA 
could further provide the first line of defense against 
plant-pathogens (Driouich et  al. 2021; Staudinger 
et  al. 2022). To date, results from a limited number 
of studies revealed plant species-specific and even 
root type-dependent differences in mucilage compo-
sition and properties (Naveed et al. 2019; Zickenrott 
et  al. 2016). The chemical composition of mucilage 
released from plant roots shares similarities with the 
composition found in primary plant cell walls, as the 
major structural components are pectic polysaccha-
rides and glycoproteins including arabinogalactans 
and extensins (Bacic et al. 1986; Driouich et al. 2013; 
Staudinger et  al. 2021). Although new methods of 
pectin detection have been developed recently (e.g. 
Anderson et  al. 2012), considerable knowledge gaps 
exist with regards to pectin biosynthesis, intracellular 
trafficking and secretion (Anderson 2016). According 
to a widely held view, mucilage is mainly secreted 
from root hair tips and the root apical region and 
together with secretions of microbial origin, a thin 
layer of mucigel can be formed around young root 
sections (McCully 1995). Due to the difficulties of 
sampling mucilage in natural soil growth conditions 
(Oburger and Jones 2018), the implications of these 
differences in plant water as well as nutrient uptake 
consequently remain unknown so far (Vetterlein et al. 
2020). Combining our current knowledge about the 
two-way interaction of soil structure and root mor-
phological development with an in-depth under-
standing of species-specific mucilage properties and 
related functions in maintaining water connectivity 
in the rhizosphere could significantly help our efforts 
to improve drought tolerance in crops. This might be 
of particular relevance for deep rooting varieties, as 
it has been shown that deep rooting genotypes are 
generally more drought tolerant than shallow rooting 
ones (Lynch 2007).
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Root exudates – a key to understanding 
rhizosphere processes

Next to their effect on soil physical properties, roots 
release a large diversity of soluble or volatile organic 
molecules (i.e. root exudates) as well as cell debris 
and sloughed-off root cap cells (which all together 
make up rhizodeposition) as they forage for water and 
nutrients. These root exudates (and other rhizodepos-
its) play a central role in rhizosphere processes as 
they spark a cascade of feedback loops between roots, 
the associated microbiome and soil particles. Release 
mechanisms and functional importance of root exu-
dates, particularly regarding nutrient mobilization 
and cycling as well as the interaction with micro-
organisms have already been discussed in numer-
ous reviews to which we refer our reader for further 
details (e.g. Badri and Vivanco 2009; Canarini et al. 
2019; Coskun et  al. 2017; Dennis et  al. 2010; Hac-
quard et al. 2017; Sasse et al. 2018; Vives-Peris et al. 
2020).

Besides triggering physicochemical processes 
such as mineral weathering, soil aggregation, and 
nutrient mobilization, it is well acknowledged that 
exudates act as signaling compounds between plants 
and microbiota and that exudate quality and quantity 
shape the rhizosphere microbiome (Reinhold-Hurek 
et  al. 2015; Sasse et  al. 2018). Furthermore, it has 
been shown that particularly under pathogen attack 
exudation is altered to recruit beneficial microbes that 
in turn trigger induced systemic resistance responses 
(i.e. systemic activation of plant defenses by hormone 
signaling upon pathogen attack) in the plant (Ber-
endsen et al. 2018; Rudrappa et al. 2008; Yuan et al. 
2018; Zhang et  al. 2020). However, many underly-
ing mechanistic details are still poorly understood, 
mainly due to our lack of knowledge on compound 
identity and diversity exuded from different species 
as well as under different environmental conditions. 
Thanks to recent developments not only in analytical 
instrumentation, but also in computing power, avail-
able data processing software as well as metabolite 
databases, the number of non-targeted metabolomic 
exudation studies aiming to reveal the entire metab-
olite composition released by roots has significantly 
increased in the past five years. These analytical 
advances allowed for better insights into how root 
exudates change with plant development (Zhalnina 
et  al. 2018) as well as upon altered environmental 

conditions including nutrient availability (Smercina 
et  al. 2021; Tantriani et  al. 2020; Wang et  al. 2022; 
Ziegler et  al. 2016), soil pollution (Frémont et  al. 
2022; Wang et al. 2021a), drought (Gargallo-Garriga 
et  al. 2018; Ghatak et  al. 2022), pathogen infection 
(Balendres et al. 2016; Zhang et al. 2020), inoculation 
with symbionts and beneficial rhizobacteria (Riviezzi 
et  al. 2021) and intercropping (Vora et  al. 2021), as 
well as on how exudation differs between different 
genotypes (Lopez-Guerrero et  al. 2022; Mönchge-
sang et  al. 2016). Furthermore, combining in-depth 
exudate analysis with improved microbiome profiling 
techniques also led to significant progress regarding 
our knowledge of effects of specific exudate com-
pounds or compound classes on the soil microbiome 
and/or other rhizosphere processes in the past decade. 
Table 1 provides an overview of specific mechanisms 
driven or influenced by individual root exudate com-
pounds or compound classes in the rhizosphere that 
have been identified to date. Despite these recent 
advances, we are still far from deciphering the entire 
metabolite diversity exuded by plants and their func-
tion in the rhizosphere. Number and chemical nature 
of metabolites or features detected very much depend 
on the analytical approach applied (Escolà Casas and 
Matamoros 2021). Furthermore, available data bases 
used for compound identification to date only allow 
to identify about 10–30% of analyzed features (e.g. 
Frémont et al. 2022; Herz et al. 2018; van Dam and 
Bouwmeester 2016). While it is admittedly difficult 
to discuss unidentified metabolites, our interpreta-
tions and conclusions particularly in the context of 
plant–microbe interactions might still be prone to 
biases if we keep our sole focus on exudate metabo-
lites that we can identify.

Nevertheless, considering the wide range of soil/
rhizosphere processes driven by root exudates, we 
should continue in our efforts to reveal the quality and 
quantity of exudates released along the root axis over 
time as this knowledge is a prerequisite to decipher-
ing mechanisms of individual exudate compounds 
and their feedback loops. Linking exudate identity 
with a specific rhizosphere mechanism will ultimately 
allow us to improve plant-breeding efforts to har-
ness the benefits of exudate-driven belowground pro-
cesses. However, studies investigating exudate quality 
and quantity under natural (soil) growth conditions 
are still rather limited. Due to the complexity of soil 
structure, root system architecture and the multitude 
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Table 1  Overview of identified mechanisms triggered/influ-
enced by individual root exudate compounds or compound 
classes including the plant biosynthetic origin of precursors 
for exudate production, the plant species for which exudate 
release has been reported and (if known) the type of trans-
porter or mechanism responsible for exudation. Metabolites 
are categorized based on the following main mechanisms: (a) 

establishment of symbiosis, (b) pathogen interaction & toxic-
ity response, (c) nutrient availability (direct & indirect) & plant 
growth, (d) drought stress & soil structure, (e) microbial com-
munity composition in the rhizosphere, (f) plant-plant interac-
tion. Note that individual root exudates can have several func-
tions and are sometimes listed in multiple categories

Compound class:
exudate compound

Metabolic 
pathway

Mechanism Release transporter/ 
mechanism

Exudation reported 
for

Reference

(a) Establishment of symbiosis
Carotenoid—derivatives 
(Strigolactones):
Strigol, solanacol, sorgomol, 
orobanchol, sorgolactone, 
4-deoxyorobanchol, 
5-deoxystrigol

Methylerythritol 
phosphate (MEP) 
pathway, carotenoid 
biosynthesis

Triggering of 
mycorrhizal infection

ABC-type Presumably all species 
forming mycorrhizal 
associations

Kretzschmar et al. 
(2012) Floková et al. 
(2020)

Flavonoids—Flavone:
Rahmnetin, apigenin, 
quercetin, luteolin, 
hyperoside, rutin, myricetin, 
kaempferol, galangin

Phenylpropanoid 
biosynthesis & 
glycolysis

Stimulation of host 
penetration, hyphal 
growth or spore 
germination

ABCG-type?
MATE? 1

Numerous species 
forming mycorrhizal 
symbiosis with Glomus 
(AM), Gigaspora (AM), 
Suillus bovinus (EM)

Cesco et al. (2012 and 
references therin)

Flavonoids—Flavanones: 
Hesperetin, naringenin

Phenylpropanoid 
biosynthesis & 
glycolysis

Stimulation of spore 
germination

Flavonoids—Isoflavonoids:
Daidzein, genistein

Phenylpropanoid 
biosynthesis & 
glycolysis

Stimulation of 
mycorrhizal 
colonization & spore 
germination

Flavonoids:
Izoliquiritigenin, 
liquiritigenin, daidzein, 
formomonetin, apigenin, 
afrormosin, medicarpin, 
vestitone

Phenylpropanoid 
biosynthesis & 
glycolysis

Triggering of root 
infection by rhizobial 
strains & nodule 
 formation4

ABCG-type Legumes, Medicaco 
truncatula

Banasiak et al. (2013)

Flavonoids—Isoflavonoids:
Genistein

Phenylpropanoid 
biosynthesis & 
glycolysis

Triggering nodule 
infection
Induction of fungal 
sporulation leading to 
vegetative growth 
reducing exudate 
consumption

LaMATE2 Lupinus albus Biała-Leonhard et al. 
(2021); Weisskopf 
et al. (2006); Zhou 
et al. (2021)

Terpenoids—Diterpene:
Abietic acid

MEP pathway Stimulation of spore 
germination

Unknown Pinus sylvestris Fries et al. (1987)
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Table 1  (continued)

Compound class:
exudate compound

Metabolic 
pathway

Mechanism Release transporter/ 
mechanism

Exudation reported 
for

Reference

(b) Pathogen interaction & toxicity response
Benzoxazinoids (BX):
2,4-Dihydroxy-7-methoxy-
1,4- benzoxazin-3-one 
glucose (DIMBOA-Glc), 
DIMBOA, N–O-methylated 
DIMBOA-Glc 
(HDMBOA-Glc)

Amino acid metabolism, 
tryptophan biosynthesis, 
indole metabolism

Inhibition of host 
recognition and 
virulence 
of pathogenic 
Agrobacterium 
tumefaciens16

Unknown2 Zea mays Maresh et al. (2006)

BX-degradation products:
6-Methoxy-2-
benzoxazolinone (MBOA),
2-benzoxazolinone (BOA)

Amino acid metabolism, 
tryptophan biosynthesis, 
indole metabolism

Inhibition of radial 
growth in 18 out of 29 
Fusarium spp. tested, 
detoxification of 
MBOA and BOA in 
some Fusarium spp.

Unknown2 Zea mays Glenn et al. (2001)

Benzoxazinoids (BX):
DIMBOA-Glc, DIMBOA, 
HDMBOA-Glc

Amino acid metabolism, 
tryptophan 
biosynthesis, indole 
metabolism

Protection against 
general herbivores, 
however BX-Fe 
complexes mediated 
infection by Western 
corn root worm

Unknown2 Zea mays Hu et al. (2018)

Coumarins:
Scopoletin

Phenylpropanoid 
biosynthesis

Inhibition of soil-borne 
fungal pathogens
 Fusarium oxysporum 
and Verticillium 
dahliae

ABCG Arabidopsis thaliana Stringlis et al. (2018); 
Ziegler et al. (2017)

Diterpene:
Rhizathalene A 
(semi-volatile)

MEP pathway Improved defence upon 
insect herbivory

MATE? 1 Arabidopsis thaliana Vaughan et al. (2013)

Diterpenoids:
Dolabraxelin, kauralexin

MEP pathway Antifungal bioactivity, 
modification of 
rhizosphere bacterial 
community

MATE? 1 Zea mays Murphy et al. (2021)

Glucosinolates:
Isothiocyanates

Amino acid metabolism Toxic effect on soil-
borne pathogens

MATE? 1 Arabidopsis thaliana Bednarek et al. 
(2009); Bressan 
et al. (2009)

Glycolipid:
Short-chained ascarosides 
(ascr#9)

Nematode origin: 
β-oxidation in plant 
peroxisomes of nematode 
secreted long-chained 
ascarosides

Repellence of parasitic 
nematodes

Unknown Arabidopsis thaliana, 
Solanum tuberosum

Manohar et al. (2020)

Mucilage:
Mix of polysaccharides, 
lipids, proteins

Amino acid 
metabolism, fatty acid 
metabolism, central C 
metabolism

Contains proteins 
with antimicrobial 
functions, protection 
from  Al3+ toxicity via 
the formation of ionic 
bonds

Exocytosis Heliophila coronopifolia, 
Glycine max

Cai et al. (2013); 
Morre et al. (1967); 
Weiller et al. (2016)

Organic acid anions:
Citrate

Central carbon (C)  
metabolism, TCA cycle

Detoxification of  Al3+ 
via complexation in the 
soil solution

MATE Hordeum vulgare Furukawa et al. 
(2007)
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Table 1  (continued)

Compound class:
exudate compound

Metabolic 
pathway

Mechanism Release transporter/ 
mechanism

Exudation reported 
for

Reference

Organic acid anions:
Malate

Central C metabolism, 
TCA cycle

Pathogen (Pseudomonas 
syringae) defence via 
attracting beneficial 
rhizobacterium Bacillus 
subtilis FB17 that 
induces biofilm 
formation

ALMT11 Arabidopsis thaliana Rudrappa et al. 
(2008)

Organic acid anions:
Ferulate, tartarate, laurate, 
salicylate

Phenylpropanoid 
biosynthesis,
Ascorbic acid 
metabolism, (and others)

Strong inhibitory effect 
on Phytophthora 
nicotianae mycelium 
growth

unknown Nicotiana tabacum Zhang et al. (2020)

Proteins:
β-1,3-Glucanases, chitinases, 
lipid transfer proteins (LTPs)

Amino acid metabolism Inhibitory effect on 
growth of fungus 
Fusarium oxysporum 
in vitro

MDR (ABC)? 1 Vigna unguiculata Nóbrega et al. (2005)

(c) Nutrient availability (direct & indirect) & plant growth

Benzoquinone:
Sorgoleone

Fatty acid metabolism 
& amino acid metabolism 
(methionine)

Biological nitrification 
inhibition (BNI) , 
suppression of plant 
growth

Exocytosis Sorghum bicolor Dayan et al. (2010); 
Subbarao et al. (2015)

Benzoxaxinoids (BX):
DIMBOA-Glc, DIMBOA, 
HDMBOA-Glc

Amino acid 
metabolism, tryptophan 
biosynthesis, indole 
metabolism

Formation of BX-Fe 
complexes and 
improved Fe acquisition

IRT 1 (uptake) Zea mays Hu et al. (2018)

Benzoxazinoids:
DIMBOA

Amino acid metabolism 
– tryptophan 
biosynthesis – indole 
metabolism

Triggering 
colonization of plant 
growth promoting 
bacterium
Pseudomonas putida

Unknown2 Zea mays Neal et al. (2012)

Coumarins:
Scopoletin, scopolin, 
fraxetin, esculetin, esculin

Phenylpropanoid 
biosynthesis

Mobilization of Fe in 
strategy I species

ABCG Arabidopsis thaliana
Brassica napus L., 
Raphanus sativus L., 
Sinapis alba L

Sarashgi et al. (2021); 
Schmid et al. (2014)

Diol:
1,9-Decanediol

Central C metabolism Biological nitrification 
inhibition,  correlation 
to N use efficiency

MATE? 1 Oryza sativa Sun et al. (2016)

Diterpene:
Brachialactone

MEP pathway Biological nitrification 
inhibition

MATE? 1 Brachiaria humidicola Subbarao et al. (2009)
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Table 1  (continued)

Compound class:
exudate compound

Metabolic 
pathway

Mechanism Release transporter/ 
mechanism

Exudation reported 
for

Reference

Non-proteinogenic amino 
acids—Phytosiderophores:
2’-Deoxymugineic 
acid, 3-epi-hydroxy-
2’-deoxymugineic acid, 
hydroxy-2’-deoxymugineic 
acid, mugineic acid, 
3-hydroxymugineic acid, 
3-epi-hydroxymugineic 
acid, avenic acid, 
2’-hydroxyavenic acid

Amino acid metabolism 
(methionine)

Mobilization, 
complexation and 
re-uptake of complexed 
Fe, (Zn, Cu) in strategy 
II species

TOM1 All grass species Nozoye et al. (2011); 
Römheld and 
Marschner (1990); 
Ueno et al. (2007)

Organic acid anions:
Citrate, malate, oxalate, 
shikimate, malonate, acetate, 
citramalate, salicylate

Central carbon 
metabolism, (and 
others)

Mobilization of P via 
ligand exchange or 
ligand promoted mineral 
dissolution

MATE?, ABC?, 
 ALMT11

All species but 
particularly cluster root 
forming species

Jones et al. (2003); 
Khorassani et al. 
(2011); Oburger et al. 
(2013); Playsted et al. 
(2006)

Phenolic methyl ester:
Methyl 3-(4-hydroxyphenyl) 
propionate (MHPP)

unknown Biological nitrification 
inhibition, alteration of 
root system architecture 
affecting plant nutrient 
uptake

MATE? 1 Sorghum bicolor Nardi et al. (2013); 
Subbarao et al. (2015)

Proteins:
Acid phosphatases

Amino acid metabolism Hydrolysis of organic 
phosphate esters

Exocytosis Caustis blakei, Lupinus 
albus

Playsted et al. (2006) 
Wasaki et al. (2009)

(d) Drought stress & soil structure

Mucilage:
Polysaccharides, lipids, 
proteins

Amino acid metabolism, 
fatty acid metabolism, 
central C metabolism

Slowing down of 
breakup of the liquid 
phase due to high 
viscosity of mucilage 
during soil drying

Exocytosis Presumably all species Carminati et al. 
(2017)

Mucilage—Polysaccharide
:Xyloglucan:
Polysaccharide Xyloglucan

Amino acid 
metabolism, fatty acid 
metabolism, central C 
metabolism

Inducing soil particle 
aggregation

Exocytosis Triticum aestivum, Zea 
mays, Hordeum vulgare, 
Pisum sativum, Solanum 
lycopersicum, Brassica 
napus, Arabidopsis 
thaliana

Galloway et al. (2018)

Phosphate ester:
Glycerol-3-phosphate

Central C metabolism Selection of drought 
tolerant microbiome 
(monoderm bacteria) 
improving crop 
drought tolerance

GP3-Permease Sorghum bicolor Xu et al. (2018)

(e) Microbial community composition in the rhizosphere

Aromatic acid:
Salicylate

Amino acid metabolism- 
shikimate pathway 
isochorismate Synthase/
Phenyl-
alanine-ammonia-lyase 
(PAL) pathway

Modulation of root-
associated microbial 
communities

Unknown Arabidopsis thaliana Berendsen et al. 
(2018); Kniskern 
et al. (2007); Lebeis 
et al. (2015)
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Table 1  (continued)

Compound class:
exudate compound

Metabolic 
pathway

Mechanism Release transporter/ 
mechanism

Exudation reported 
for

Reference

Benzoxazinoids:
DIMBOA-Glc, DIMBOA, 
HDMBOA-Glc

Amino acid metabolism 
– tryptophan biosynthesis 
– indole metabolism

Selective impact 
on rhizobiome: 
depletion of 
Flavobacteriaceae & 
Comamonadaceae 
and enrichment of 
various potential 
pathogenic funigi

Unknown2 Zea mays Cadot et al. (2021)

Coumarins:
Scopoletin, fraxetin, 
sideretin

Phenylpropanoid 
biosynthesis

Limiting growth of 
Pseudomonas in a 
synthetic rhizobiome 
community by 
generating ROS 
affecting microbial 
proliferation

ABCG Arabidopsis thaliana Voges et al. (2019)

Glucosinolates: Amino acid biosynthesis Alphaproteo bacteria, 
Rhizobiaceae, and 
fungal communities 
were altered in both 
structure and 
composition

PEN3 (ABCG) 
interacting with PEN2 
(Myrosinase)

Arabidopsis thaliana Bressan et al. (2009)

Glycoalkaloid saponin:
Tomatine

Phenylpropanoid 
biosynthesis – 
cholesterol biosynthesis 
(not fully resolved)

Enrichment of 
Sphingomonadaceae in 
tomato rhizosphere

Unknown Solanum lycopersicum Nakayasu et al. 
(2021)

Oxylipin:
Jasmonate

Lipid metabolism Modulation of 
root-associated 
microbial communities

Unknown Arabidopsis thaliana Berendsen et al. 
(2018); Carvalhais 
et al. (2015); 
Doornbos et al. 

(2011)

Ureides:
Allantoin

Amino acid biosynthesis 
(glutamine), purine 
catabolism

Increase in Clostridium 
and Sporosarcina and 
decrease in 
Gracilibacter, 
Opitutus, 
Pelotomaculum, 
Phenylobacterium and 
Oxobacter in rice 
rhizosphere under both 
high and low P

Ureide permease (UPS) Oryza sativa Lescano et al. (2020); 
Matsushima et al. 
(2021)

Vitamin:
Pantothenate

Amino acid biosynthesis 
(valine, β-alanine)

Unknown

Non-proteinogenic amino 
acids:
2-Aminobutyrate (GABA)

Amino acid 
biosynthesis (glutamate, 
proline), polyamide 
pathway

ALMT1

Hexosamines:
N-Acetylglucosamin 
(GlcNac)

Amino acid and central 
carbon (glucose) 
metabolism

Unknown

(f) Plant-plant interaction

Ureide:
Allantoin

Purine catabolism Stimulation of 
germination and 
growth of barnyard 
grass (Echinochloa 
crus-galli)

Ureide permease (UPS) Oryza sativa Sun et al. (2012)
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of processes that are immediately activated once the 
plant root releases C compounds into the soil, sam-
pling of root exudates unaltered by these processes 
from soil-grown plants is highly challenging (Oburger 
and Jones 2018). However, if we want to link root 
exudation to rhizosphere processes, it is imperative 
to collect exudates from soil grown plants in  situ as 
plant metabolism (and therefore root exudation) will 

be significantly affected by the growth medium and 
its associated microbiome.

Carbon turnover and C sequestration

Soil C content and related soil C dynamics are an 
integral factor of soil health affecting plant growth 

Table 1  (continued)

Compound class:
exudate compound

Metabolic 
pathway

Mechanism Release transporter/ 
mechanism

Exudation reported 
for

Reference

Diterpene:
Momilactone A & B

MEP pathway; Allelopathic effect on 
weed growth, e.g. 
herbicide resistant 
barnyard grass

Unknown (allelopathic) Oryza 
sativa

Kato-Noguchi et al. 
(2008); Kato-Noguchi 
and Peters (2013)
Yang et al. (2017)

Flavonoid:
Tricin

Shikimate and MEP 
pathway

Benzoxazinoids (BX):
DIBOA, DIMBOA
BX degradation products:
APO, AMPO

Amino acid 
metabolism tryptophan 
biosynthesis – indole 
metabolism

Root growth inhibition 
in Avena fatua, Lolium 
rigidum, Arabidopsis 
thaliana, Lactuca 
sativa through 
inhibition of histone 
deacetylation

Unknown2 Cereal crop species Macías et al. (2006); 
Venturelli et al. 
(2015)

Benzoquinone:
Sorgoleone

Fatty acid metabolism 
& amino acid 
metabolism 
(methionine)

Allelopathic effect 
on weed seedling 
growth (weed 
seedlings tested: 
Abutilon theophrasti, 
Datura stramonium, 
Amaranthus 
retroflexus, Setaria 
viridis, Digitaria 
sanguinalis, 
Echinochloa crus-galli)

Exocytosis Sorghum bicolor Einhellig and Souza 
(1992)

Carotenoid:
(-)-Loliolide

Carotenoid biosynthesis Increase in DIMBOA 
concentration in 
neighbouring wheat 
roots; induced 
expression of 
momilactone B and 
tricin in seedling roots 
of allelopathic rice

Unkown Triticum aestivum, 
Eleusine indica, Digitaria 
sanguinalis, Abutilon 
theophrasti, Bidens 
frondosa, Lolium 
perenne, Avena fatua, 
Alopecurus japonicus, 
Aegopilus tauschii, Eri
nocholoa crus-galli

Kong et al. (2018); Li 
et al. (2020b)

Oxylipins:
Jasmonate

Lipid metabolism

Carotenoid-derivatives:
Strigol, solanacol, sorgomol, 
orobanchol, sorgolactone, 
4-deoxyorobanchol, 
5-deoxystrigol

Methylerythritol 
phosphate (MEP) 
pathway, carotenoid 
pathway

Germination factor of 
root parasitic Striga, 
Orobanche and 
Phelipanche spp. with 
strong negative effect 
on yield

ABC Sorghum bicolor, Oryza 
sativa, Pisum sativum, 
Solanum lycopersicum

Floková et al. (2020)

1  Suggested for this compound class by Sasse et al. (2018) and references therein
2  Inactive BX-glucosides are stored in plant cells within vacuoles, preventing autotoxicity. A proposed model suggests that BXs 
are released into the apoplastic space as BX-glycosides and later transformed into bioactive aglycones by extracellular glucosidases 
(Ahmad et al. 2011). Therefore, BX secretion is presumably (at least partially) driven by vesicle fusion and exocytosis. A recent pro-
teome profiling indicated the presence of an extracellular DIMBOA-β-glucosidase in wheat root tip mucilage (Staudinger et al. 2022)
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and performance. Together with leaf litter, root lit-
ter (i.e. dead roots and associated hyphae) poses a 
major C input into the soil, particularly for subsurface 
horizons. In addition, living roots and mycorrhizal 
hyphae and associated microbiota actively distribute 
C throughout the soil via the release of root exudates, 
mucilage, sloughed-off root cells and cell wall debris, 
depositing C into soil pores and onto mineral surfaces 
contributing to soil organic carbon (SOC) stabiliza-
tion (Frey 2019). Consequently, roots play a central 
role in the dynamics of SOC pools and fluxes as well 
as in soil structure formation. While the importance 
of the input and stabilization of SOC by roots is 
increasingly recognized, paradoxically, SOC desta-
bilization by plant roots has also been observed to 
play a crucial role in soil C dynamics (Dijkstra et al. 
2021). Roots were found to not only form but also 
destroy aggregates, rendering previously protected 
C available to microbial decomposition (He et  al. 
2020; Six et al. 2000). Furthermore, roots and related 
rhizodeposition are known to change soil organic 
matter decomposition dynamics when compared to 
rootless soil under the same environmental condi-
tions, which is generally referred to as the rhizosphere 
priming effect (RPE) (Kuzyakov 2002). RPE can lead 
to both accelerated but also reduced SOC destabili-
zation, with reported changes in decomposition rates 
ranging from 50% reduction to 380% increase (Cheng 
et  al. 2014). Possible mechanisms driving the RPE 
comprise (i) increased microbial growth and activ-
ity due to rhizodeposition resulting in an increase of 
co-metabolic SOM decomposition (microbial acti-
vation hypothesis), (ii) reduced mineral N due to 
plant uptake promoting N mining from SOM thereby 
increasing SOM decomposition (microbial N-mining 
hypothesis) and (iii) the aforementioned physical 
destruction of macroaggregates by roots exposing pre-
viously protected SOM to microbial decomposition 
(aggregate destruction hypothesis) (Lu et  al. 2019; 
Vetterlein et  al. 2020). In a recent review Dijkstra 
et  al. (2021) proposed a framework termed” Rhizo-
Engine” to reconcile the paradox of both SOC stabi-
lization and destabilization co-occurring in the rhizo-
sphere. The authors identified two key components 
driving SOC stabilization and destabilization; micro-
bial turnover and the physicochemical soil matrix. 
Microbial turnover can be fueled by plant litter and 
rhizodeposition, as well as from unprotected but also 
protected SOC pools leading to SOC mineralization 

but at the same time producing microbial necromass. 
Reactions of the physicochemical soil matrix with 
various SOC pools are responsible for protection/
stabilization as well as for deprotection/destabiliza-
tion of SOC, with the latter feeding again into micro-
bial turnover. Root activity can further accelerate or 
decelerate SOC stabilization/destabilization by (i) 
physical and chemical liberation of C by rhizodeposi-
tion, (ii) formation and destruction of aggregates as 
well as by (iii) water and nutrient uptake. While this 
framework helps us to grasp the interlinked complex-
ity of these co-occurring processes in the rhizosphere, 
the net effect of C sequestration and nutrient turno-
ver will ultimately depend on plant economic traits, 
symbiotic relationships between plants and microbes 
as well as environmental factors such as soil proper-
ties and climatic conditions (Bastida et al. 2019; Dijk-
stra et al. 2021; Henneron et al. 2020). Currently we 
have only started to understand global dynamics and 
resulting effects of site-specific rhizosphere dynamics 
and their impact on C and nutrient cycling.

Plant nutrition

Sufficient nutrient availability is essential for plant 
health and yield. However, our focus must lie not only 
on crop quantity but also on crop quality. Mineral and 
vitamin malnutrition – the so-called “hidden hunger” 
is considered one of the greatest challenges currently 
faced by human kind. The World Health Organiza-
tion estimates that two billion people suffer from 
micronutrient malnutrition, like iron (Fe) and zinc 
(Zn), causing 7.3% of disease burden (Thompson and 
Amoroso 2014). Plant breeding-based biofortifica-
tion, i.e. the delivery of micronutrients via micronu-
trient-rich crops, is considered the most cost-effective 
and sustainable approach to alleviate this hidden hun-
ger (Welch and Graham 2004; White and Broadley 
2009). Traditional interventions like mineral supple-
mentation, industrial fortification, crop fertilization, 
etc., require infrastructure and access to markets and 
therefore often fail to reach the most vulnerable peo-
ple in remote areas.

Growing (micro)nutrient-efficient crops is of par-
ticular importance in arid and semi-arid environments 
that are dominated by high pH and/or saline soils that 
are typically characterized by low and unbalanced 
phytoavailability of nutrients. At high pH nutrients 
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are strongly fixed either by precipitation (Fe, P) or 
(particularly relevant for cationic micronutrients) 
by sorption to negatively charged mineral surfaces 
(White and Broadley 2009). Furthermore, nutri-
ent imbalances also occur in high acidic soils where 
plants are challenged with Ca, P and Mo deficiency as 
well as with Fe, Al, and Mn toxicity (Adams 1981). 
While translocation of nutrients within the plant tis-
sue, especially to the edible parts during ripening, is 
an important aspect of (micro)nutrient efficiency in 
crops, the first and most important barrier to nutrient 
absorption resides at the root-soil interface (Bishopp 
and Lynch 2015). Differences in root architecture and 
geometry have been found to play an important role 
in nutrient acquisition. For example, shallow basal 
root growth enhances topsoil foraging for phospho-
rus (P) because in most soils P is concentrated in the 
topsoil (Lynch and Brown 2001). In addition, root 
hairs are implicated to increase the absorption sur-
face of the root and therefore the volume of soil that 
can be scavenged for nutrients (Gahoonia and Nielsen 
2004). Miguel et al. (2015) demonstrated that a shal-
low basal root growth angle together with high root 
hair length and density had a synergistic effect on P 
acquisition efficiency in common bean (Phaeseus vul-
garis) and resulted in increased growth and P uptake 
compared to common bean lines either lacking in or 
expressing only one of investigated root phenotypes. 
However, a shallow root architecture was found to be 
less efficient in capturing N and it can also be a dis-
advantage under drought stress due to top soil drying. 
Dimorphic root phenotypes combining deep rooting 
with shallow rooting of the top soil are considered as 
more favorable particularly in climates facing drought 
periods (Lynch 2019).

Plant belowground traits relevant for nutrient 
acquisition are not limited to different root architec-
tural and morphological phenotypes, but also include 
the ability of plants to shape rhizosphere properties 
to their benefit. Roots can enhance nutrient avail-
ability either directly via the exudation of nutrient 
solubilizing compounds (e.g. protons, carboxylates, 
enzymes, phytosiderophores, coumarins)(Dakora and 
Phillips 2002) or indirectly by sustaining a micro-
bial community that efficiently solubilizes mineral 
nutrients and incorporates them into their biomass 
(Sasse et  al. 2018). Furthermore, though temporar-
ily unavailable, nutrients stored in the microbial bio-
mass are generally considered plant available due to 

rapid microbial turnover in the rhizosphere (Raymond 
et  al. 2021). While changes in root morphology, 
transporter expression and activity alter the plants’ 
nutrient uptake capacity, the modification of nutrient 
solubility via rhizosphere processes ultimately deter-
mines the pool size of nutrients available for uptake. 
A crop with a high nutrient absorption capacity will 
still grow poorly if soil nutrient availability is insuf-
ficient. Consequently, it will be of crucial impor-
tance in the future to improve our understanding of 
root traits and related rhizosphere processes and sup-
port plant breeders in selecting crops that grow well 
(in terms of quantity and food quality) under nutrient 
poor conditions.

The nutrient solubilizing capacity of specific exu-
date compounds like organic acid anions, coumarins, 
and phytosiderophores (grass species only) has been 
repeatedly demonstrated (e.g. Baune et  al. 2020; 
Oburger et al. 2011; Schenkeveld et al. 2014; Schmid 
et al. 2014; Walter et al. 2016, see also Table 1) and 
reviewed (Adeleke et  al. 2017; Dakora and Phillips 
2002; Jones and Darrah 1994). While mechanistic 
studies provide important insights on the concentra-
tion-dependent nutrient mobilizing potential of exu-
dates, there is still a lack of data on whether or not 
exudation rates, particularly from soil grown plants, 
are high enough to induce sufficient nutrient mobi-
lization. Probably the best reported example of suc-
cessful, exudate-driven nutrient acquisition includes 
P mobilization by all cluster and dauciform root 
forming species from the families Proteaceae, Res-
tionaceae, Cyperaceae and Fabaceae (Lambers et al. 
2008, 2006). Cluster roots are only a few days physi-
ologically active, during their development (juve-
nile stage), they accumulate high concentrations of 
organic acids in their tissue which they then release 
as organic acid anions together with protons and acid 
phosphatases at maturity in an exudative burst into the 
soil allowing for highly efficient P solubilization even 
in P impoverished soils (Playsted et al. 2006). Inter-
estingly, in contrast to several reports on the high P 
acquisition efficiency of cluster roots (Lambers et al. 
2008 and references therin), Gusewell and Schroth 
(2017) did not find differences in nutrient acquisi-
tion or evidence for nutritional niche differentiation 
of European Carex species with and without cluster 
roots grown in a semi-hydroponic system. Hydro-
ponic experiments with Brassica also observed an 
increase in organic acid exudation upon P starvation 
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(Akhtar et al. 2008; Aziz et al. 2011; Shahbaz et al. 
2006). Similarly, screening phytosiderophore exuda-
tion of different bread (Triticum aestivum) and durum 
(T. turgidum L. conv. durum) genotypes in hydropon-
ics under Zn deficiency suggested higher phytosidero-
phore exudation rates for Zn efficient genotypes (Cak-
mak et al. 1994; Rengel 1999; Rengel and Römheld 
2000). While reported evidence based on hydroponic 
studies is promising, soil-based studies are needed to 
verify these results under natural growth conditions.

Changes in rhizosphere pH and redox potential are 
also known to affect nutrient solubility at the root-
soil interface (Hinsinger et  al. 2003). The underly-
ing physiological mechanisms driving rhizosphere 
acidification/alkalinization are complex and can be 
caused by multiple, potentially co-occurring factors. 
Proton release pathways have been well described 
with  H+-ATPase being the major proton transport 
plasma membrane protein (Yan et al. 2002; Zhu et al. 
2009). While the release of  OH− or  HCO3

− is often 
proposed as the dominant mechanisms leading to 
rhizosphere alkalinization (Hinsinger et al. 2003 and 
references therin), to the best of our knowledge, a 
transport mechanism for  OH− or  HCO3

− has not yet 
been identified. Irrespective of the precise mecha-
nisms, one major driver of changes in rhizosphere 
pH has been found to be the cation–anion uptake 
balance. Especially the ionic form of mineral nitro-
gen  (NO3

−,  NH4
+) uptake was found to have a major 

impact on rhizosphere pH (Hinsinger et  al. 2003; 
Kirkby and Mengel 1967; Kosegarten et  al. 1997; 
Ruan et al. 2000). The effect of N forms on cellular 
pH homeostasis and the current understanding of 
how changes in rhizosphere pH are brought about, 
have been extensively reviewed elsewhere (Britto and 
Kronzucker 2005; Feng et al. 2020). Briefly, expres-
sion and activity of  H+ pumping complexes, such 
as plasma membrane  H+-ATPase, are upregulated 
upon uptake of  NH4

+ leading to rhizosphere acidi-
fication while  NO3

− is taken up by plant roots via a 
 2H+/  NO3

− symporter. This was further confirmed 
when Arabidopsis plants with a point-mutation in the 
gene encoding the major nitrate transporter NRT1.1 
showed no rhizosphere akalinization when grown on 
 NO3

− rich medium (Fang et al. 2016). Marschner and 
Römheld (1983) nicely demonstrated that the extent 
of pH changes very much depended on the level of 
either  NO3

− and  NH4
+ applied but also differed 

between species and was influenced by soil pH buffer 

capacity. Species specific differences were suggested 
to be linked to the different responses of  H+-ATPases 
activity upon  NH4

+ (cation) uptake (Schubert and 
Yan 1997). Depending on the driver, Römheld et al. 
(1984) also observed either acidification of the entire 
root system due to the preferential uptake of  NH4

+ 
and  K+ by hydroponically grown sunflower seedlings 
or intensive proton release at the root tips only upon 
Fe deficiency. Santi and Schmidt (2009) did not only 
decipher the underlying molecular mechanisms of 
Fe-deficiency induced proton release in Arabidopsis, 
they also reported differences in acidification capacity 
among Arabidopsis accessions indicating a genotypic 
diversity in Fe acquisition efficiency that is linked 
to the extent of rhizosphere acidification in all non-
grass species (strategy I). Nutrient deficiency induced 
rhizosphere acidification (Nussaume et  al. 2011; Xu 
et  al. 2012; Yan et  al. 2002) but also alkalinization 
(Kuppe et  al. 2022) has also been reported upon P 
starvation and considerable acidification is typically 
found in the rhizosphere of  N2 fixing legumes (Mar-
schner and Römheld 1983). Intercropping with leg-
umes therefore might not only improve N nutrition in 
the co-crop but can also have a positive effect on P 
and micronutrient uptake (Gunes et al. 2007). In addi-
tion, growth of young root tissue and root hairs also 
seem to be generally accompanied by the release of 
protons (Bibikova et  al. 1998; Hager 2003) and can 
consequently affect rhizosphere pH and nutrient solu-
bility. Even though much progress has been made on 
revealing the mechanisms of rhizosphere pH changes, 
there is only a limited number of studies looking at 
genotypic differences in rhizosphere acidification/
alkalinization and whether or not these differences 
translate to higher nutrient acquisition efficiency. 
Screening 10 chickpea (Cicer arietum) genotypes in a 
calcareous soil as well as in nutrient solution culture, 
Gahoonia et  al. (2007) observed a higher absorp-
tion of Fe, Zn, Mn, K and P by genotypes induc-
ing stronger acidification and possessing longer and 
denser root hairs. Interestingly, screening 10 lentil 
(Lens culinaris) lines grown on the same calcareous 
soil, Gahoonia et  al. (2006) could only link prolific 
root hair formation with enhanced nutrient uptake but 
observed no differences in rhizosphere acidification.

Taken together, all these findings suggest that both, 
root exudation and the modulation of rhizosphere 
pH might be promising plant traits in crop breeding 
programs. However, more in-depth work relating 
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genotypic differences in root exudation, as well as in 
rhizosphere acidification/alkalinization under varying 
environmental (soil) conditions to nutrient uptake is 
needed to successfully capitalize on these plant traits 
in the future.

To date, several approaches to improve plant nutri-
tion and growth performance exist that are already 
capitalizing on beneficial plant–microbe interac-
tions. Most plants on land (about 90%) are forming 
a symbiosis with mycorrhizal fungi, trading pho-
tosynthates for fungal-acquired nutrients (Averill 
et  al. 2019; Tedersoo et  al. 2020). Based on their 
structure and function, four major mycorrhizal types 
have been described, namely arbuscular mycorrhiza 
(AM), ectomycorrhiza (EM), orchid mycorrhiza and 
ericoid mycorrhiza. About 75% of plants are esti-
mated to form AM associations, 2% of plants are 
colonized by EM, about 9% of plants form orchid 
mycorrhiza and ca. 1% of plants form ericoid mycor-
rhiza (Brundrett 2002). It is rather the rule than the 
exception that an individual plant is infected by mul-
tiple mycorrhizal fungi and most mycorrhizal fungi 
are not host-specific. Some plant species like poplars 
and eucalypts, also form dual mycorrhizal associa-
tions with AM and EM fungi (van der Heijden et al. 
2015). The same authors summarized that mycorrhiza 
can acquire between 70%-100% of plant phospho-
rus (P) uptake (irrespective of mycorrhiza type) and 
contribute up to 20% (AM) and 80% (EM, Ericoid) 
respectively to plant nitrogen (N) acquisition. While 
EM were reported to dominate particularly temperate 
and boreal forest ecosystems, AM are most relevant 
from an agronomic point of view, as many crops form 
associations with AM (Read 1991). However, there 
is an ongoing debate whether or not farmers should 
actively modify their management in order to enhance 
the abundance and diversity of AM (Rillig et  al. 
2019; Ryan and Graham 2018). Likewise, there is 
continuous critical discussion on whether the benefit 
of applying industrial fungal bioinoculants outweighs 
the risk of additional financial expenses, as well as 
potential negative effects on plant and soil diversity 
and ecosystem functioning (Hart et al. 2018). While 
positive mycorrhizal growth responses have been 
reported many times from controlled laboratory and 
greenhouse experiments, results from field studies 
are less clear (but also far less abundant). This arises 
from the complex interactions of numerous, partly 
uncontrollable factors that can influence plant growth 

in the field that complicate identifying reliable mech-
anistic drivers of growth responses (Ryan and Gra-
ham 2018). However, a meta-data analysis showed 
that plant response to mycorrhizal colonization is 
most positive when plants are P limited rather than N 
limited (Hoeksema et  al. 2010). The authors further 
revealed that woody plants, non-N fixing forbs and 
C4 grasses responded more positively to mycorrhizal 
inoculation than plants with N-fixing bacterial sym-
bionts and C3 grasses. In addition, a negative rela-
tionship between AMF benefits and root hair length 
has been reported (Schweiger et  al. 1995). Depend-
ing on relative supply of P and N and probably also 
other nutrients, as well as levels of water availability 
and light, the relationship between plant and mycor-
rhizal fungi was found to range from mutualism to 
commensalism to parasitism, which is also referred 
to as the so-called trade-balance model (Johnson et al. 
1997; Johnson and Graham 2013). Nitrogen nutrition 
generally seems to play a crucial role in determining 
the agronomic success of mycorrhizal colonization, 
with low N availability often resulting in N compe-
tition between plants and AM leading to a negative 
growth response (e.g. Püschel et al. 2016). Research 
of the past decades indicates that achieving a posi-
tive yield response by increasing AM colonization or 
adding industrial inoculants very much depends on 
plant species and environmental conditions, and our 
current knowledge is insufficient to reliably predict 
successful application/management scenarios (Ryan 
and Graham 2018). Nevertheless, as highlighted by 
Rillig et  al. (2019), next to their direct influence on 
plant nutrition/yield, mycorrhiza also provide several 
other, highly relevant ecosystem services, including 
soil organic matter decomposition and stabilization, 
reduction of N leaching losses, denitrification and 
reduced  N2 losses, regulation of plant diversity, as 
well as increasing soil aggregation and plant seedling 
survival. Another recent study suggests that inocu-
lation of fungi could generally result in short-term 
increased plant productivity. This, however, comes 
at a potential cost of reducing biodiversity by anthro-
pogenically increasing the abundance of mutualistic 
fungi that provide less of these ecosystem services 
noted above (Martignoni et al. 2020).

Next to mycorrhiza, a range of other, free-living 
microorganisms (e.g. several species of the genera 
Pseudomonas, Aspergillus or Penicillium) have been 
identified to efficiently solubilize phosphate from 
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which plants can potentially benefit (Richardson 
2001). The use of free-living phosphate solubiliz-
ing microorganisms (PSM) as biofertilizers has been 
intensively investigated in the past decades rang-
ing from in vitro experiments, to controlled labora-
tory/greenhouse studies, to field trials. Microbial P 
solubilization mechanisms include dissolution of P 
minerals via acidification, ligand exchange as well 
as ligand promoted mineral dissolution by released 
carboxylates, as well as the release of extracellular 
phosphatases that transform organic P to inorganic P 
which can then be taken up by neighbouring plants 
(Jones and Oburger 2011; Rodrı́guez and Fraga 
1999). A recent study demonstrated that PSM can 
feed on plant-derived pectin which is the major pol-
ymer of root mucilage and primary cell walls (Mise 
et al. 2020). Interestingly, microbial genes associated 
with pectic lyase activity were significantly increased 
in P deficient tropical soils (Yao et al. 2018), suggest-
ing that PSM can establish in the rhizosphere and 
that plant root-derived pectin contributes to patterns 
in rhizosphere microbial community assembly. Simi-
lar to mycorrhiza, positive plant growth responses to 
inoculation with PSM were mostly reported for con-
trolled laboratory conditions (e.g. Pande et al. 2017; 
Wakelin et al. 2007), while field trials (but also labo-
ratory studies) more frequently failed to demonstrate 
an increase in plant growth or yield (Karamanos et al. 
2010; Meyer et  al. 2017; Raymond et  al. 2019). In 
addition to important factors determining the colo-
nization and persistence of PSM in soils (pH, P, N, 
C availability, inoculum quality and placement strat-
egy), Raymond et  al. (2021) summarized that PSM 
generally do not have the capacity to solubilize suffi-
cient P beyond meeting their own need to improve the 
crops P supply on a short term scale. The authors sug-
gested that future mechanistic studies on P mobiliza-
tion by PSM should focus on PSM as a component of 
the whole soil community addressing the longer-term 
role of P storage and cycling by the soil microbiome.

Biological nitrogen fixation (BNF) is another 
important rhizosphere process that we can harness to 
improve plant nutrition. BNF is carried out by bac-
teria capable of fixing atmospheric nitrogen  (N2) and 
transforming it into ammonia  (NH3) via the nitro-
genase enzymes. In soil, these specialized bacteria 
either occur as free-living bacteria (e.g. Azotobac-
ter), form associative relationships with host plants 
(e.g. Azospirillum, Kosakonia), or they can establish 

symbiotic associations with legumes and other plant 
species (e.g. Rhizobium harboured in nodules). In 
the latter, the plants provide photosynthetic C while 
the bacteroids deliver nitrogen fixed from the atmos-
phere to the host plants. It has been estimated that the 
global contribution of symbiotically fixed  N2 is likely 
to be in the order of 20–22 million tons N per year 
(Herridge et al. 2008). Since the quantity of symbioti-
cally fixed N is directly related to plant growth perfor-
mance, factors affecting host plant biomass produc-
tion such as water and nutrient availability or disease 
incidence and pests are crucial determinants of the 
amounts of  N2 fixed. Furthermore, agricultural prac-
tises affecting effective rhizobia in soil or soil nitrate 
concentrations (excessive tillage, application of N fer-
tilizer) were found to be critical (Peoples et al. 2009). 
Host infection by an appropriate rhizobial strain is 
usually most effective when the host plant was part of 
a recent crop rotation otherwise desired strains might 
be absent and inoculation is needed to ensure satis-
factory nodulation. Furthermore, the timing of inoc-
ulation has been reported to affect the contribution 
of BNF to crop growth. Re-inoculation of soybeans 
with Bradyrhizobium strains at several plant growth 
stages significantly increased the amount of N pro-
vided by inoculated diazotrophs and also was found 
beneficial for grain yield and N content in grains 
(Hungria et  al. 2006). Comparing yield responses 
upon inoculation to local farming practices in 377 
field trials with different legume crops from more 
than 20 countries, Peoples et al. (2009) found that on 
average 57 ± 21% (mean ± SD) trials had a significant 
positive yield response upon inoculation. These find-
ings highlight the potential but also the challenges of 
symbiotic BNF in sustainable agriculture. The same 
authors also pointed out that poor inoculum quality, 
in addition to lack of knowledge/training and finan-
cial means particularly in Africa and Asia is often 
responsible for no yield responses. As economic 
restrictions remain an insurmountable problem par-
ticularly in developing countries, plant breeding and 
research efforts should also focus on promiscuously-
nodulating legume lines that require no inoculation 
by farmers. Additionally, other soil management and 
agronomical practices need to be further explored to 
maximize N inputs by symbiotic BNF including use 
of legume genotypes best adapted to prevailing soil 
and environmental conditions, including optimized 
regional planting time, incorporation of legume 
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residues, intercropping, cereal-legume crop rotations, 
use of short duration legume green manure or legume 
catch crops (Peoples et  al. 2009). Such a multi-fac-
eted strategy was followed in the N2AFRICA project, 
a science-based endeavour aiming to enhance pro-
ductivity of smallholder farmers in Africa by grow-
ing legume crops (https:// www. n2afr ica. org/ home; 
Giller et al. 2013). The inclusion of additional forms 
of capacity building such as education, women’s 
empowerment, and improved access to local markets 
represents a promising template for future strategies 
to expand legume-rhizobia symbioses in sustainable 
agriculture.

Besides nodule-forming rhizobia, inoculation 
formulae containing associatively-living  N2 fix-
ing strains have also been investigated in field trials 
for decades. Okon and Labandera-Gonzalez (1994) 
reviewed the application of Azospirillum inoculates, 
a rhizobacterium known for its associative  N2 fixa-
tion, in agriculture after 20 years of worldwide field 
application. Back then, the authors reported success 
rates of 60–70% with statistically significant yield 
increases by 5–30%. Similar to Rhizobium inoculates, 
the quality (optimal number of viable cells) of Azos-
pirillum inoculum played a crucial role in achiev-
ing a positive yield effect. Research in the past dec-
ades however revealed that improved plant growth 
after inoculation with Azospirillum is most likely 
more related to its capacity to produce phytohor-
mones, like indole-3-acetic acid, than to its  N2 fixa-
tion activity (Fukami et  al. 2018). The contribution 
of associative  N2 fixation to N nutrition of crops has 
been observed to be most pronounced for C4 plants 
in soils of subtropical and tropical climates where 
enough C can be provided by the host plant to support 
the energy-demanding process of N fixation by the 
inoculated diazotrophs (Dobbelaere et  al. 2001).  In 
recent years, potential strategies to harness N fixed by 
free-living bacteria in the rhizosphere have been put 
forward and discussed multiple times (e.g. Smercina 
et  al. 2021; Bennett et  al. 2020; Bloch et  al. 2020). 
A potentially promising avenue represents the edit-
ing of the genome of bacterial strains via synthetic 
biology to increase their N fixation capacity under 
field condition and to render a commercial applica-
tion as bio-fertilizers a successful endeavour. Such 
an approach was reported for a free-living strain of 
Klebsiella variicola, where the authors replaced the 
nifL gene, which usually represses N fixation under 

conditions of sufficient N availability, with a constitu-
tive promoter to obtain a strain that could still fix N 
under field conditions (Wen et  al. 2021). In a num-
ber of trials where the strain was applied in addition 
to inorganic fertilizers in corn fields, increased yields 
of around 3% and lower within-field yield variance 
were observed as compared to fields that were only 
subjected to inorganic fertilization. Although such an 
approach could support a more sustainable intensifi-
cation of agricultural systems, it remains unclear if 
the increase in productivity was due to an increased 
provision of N to the maize plant by the genetically 
modified strain or due to other plant growth promot-
ing factors such as detailed before. It is also question-
able if a moderate increase in yield, and thus a rela-
tively high cost-to-benefit ratio, will be sufficient to 
stimulate the application of rhizosphere-associated 
microorganisms in agricultural systems (Shah et  al. 
2021). Moreover, the long-term impact of genetically 
modified strains on microbial diversity and related 
ecosystem functions still remains unknown.

Plant health

Next to optimal water and nutrient use efficiency, 
overall plant immunity, defined as the inherent or 
induced capacity to resist or tolerate pathogens and 
herbivores, is an important trait affecting overall plant 
growth and yield. How much resources are allocated 
to plant growth or to plant defense strategies is pre-
cisely regulated by the complex and interconnected 
crosstalk among phytohormones. Phytohormones 
are endogenously produced small organic molecules 
regulating gene expression via signal transduction 
pathways in response to changes in environmental 
conditions. Besides the classical groups of phyothor-
mones (auxins, cytokinins, gibberellic acid, ABA 
and ethylene) (Egamberdieva et  al. 2017 and refer-
ences therein), other compounds have more recently 
been identified as plant hormones (salicylic acid, 
jasmonates, brassinosteroids, strigolactones and 
small peptides (Al-Babili and Bouwmeester 2015; 
Berens et  al. 2017; Kaufmann and Sauter 2019)). 
On the one side, most phytohormones are involved 
in plant immunity and regulate rhizosphere microbi-
ome assembly; on the other side, soil microbes them-
selves can produce certain phytohormones and trigger 
changes in plant hormonal homeostasis (Eichmann 

https://www.n2africa.org/home
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et  al. 2021). Reductionist approaches using a small 
number of microbes under controlled environmental 
conditions have helped us to identify causal relation-
ships in plant–microbe interactions. Besides constitu-
tively synthesised physical and chemical barriers (cell 
wall polymers such as suberin and lignin, or antimi-
crobial phytoanticipins) (Singh et al. 2021; VanEtten 
et  al. 1994), plants can detect microorganisms and 
trigger complex signaling cascades leading to induced 
immune responses that confer a more tolerant pheno-
type. These immune responses include enhanced local 
production of reactive oxygen species at the infection 
site (Survila et al. 2016) and improved ROS detoxifi-
cation in neighboring tissues (Souza et al. 2017)(but 
also under abiotic stress conditions), increased abun-
dance of pathogen-related proteins, callose accumu-
lation (Millet et  al. 2010) or the enhanced synthesis 
of specialized antimicrobial metabolites (Duan et al. 
2014). Low molecular weight (LMW) antimicrobial 
metabolites that are induced upon pathogen infection 
but are otherwise not present in healthy plants are 
generally referred to as “phytoalexins”, while “phy-
toanticipins” are defensive compounds that are pre-
sent in plants before being challenged by pathogenic 
microorganisms and are typically upregulated under 
pathogen attack (VanEtten et al. 1994). Examples of 
exuded metabolites that have been identified to act as 
phytoalexins/phytoanticipins in the rhizosphere are 
summarized in Table 1.

The activation of these responses is sparked by 
conserved molecular patterns such as bacterial flagel-
lin, fungal chitin or damage-associated molecular 
patterns, which are perceived by plasma membrane-
associated plant receptors that trigger signaling cas-
cades resulting in basal defense mechanisms (Anto-
lin-Llovera et  al. 2014; Souza et  al. 2017). In the 
rhizosphere, beneficial microbes can induce plant 
physiological changes that result in enhanced growth 
or stress resistance. Plant-growth promoting rhizo-
bacteria (PGPR) are typically identified by their abil-
ity to produce and release phytohormones or induce 
alterations in plant hormone homeostasis. Inocula-
tion with phytohormone-releasing PGPR can result 
in increased root growth under nutritional or other 
environmental stresses (drought, salt, pollution, etc.), 
leading to improved biomass production as larger 
root systems allow increased resource acquisition 
(Fukami et al. 2018; Hayat et al. 2010; Nadeem et al. 

2013). Furthermore, specific species of the root-
associated genera Pseudomonas, Bacillus and Tricho-
derma have been shown to enhance plant immunity 
not only locally at the site of infection, but can also 
stimulate the defensive capacity in distal plant organs 
(Pieterse et  al. 2014). This phenotype is referred to 
as induced resistance phenotype and is often mech-
anistically linked to immune responses regulated 
by salicylic acid or ethylene and jasmonic acid (De 
Kesel et al. 2021). For example, root colonization by 
Pseudomonas simiae stimulated the production of 
glucosinolates in A. thaliana leaves via ethylene and 
jasmonic acid signaling cascades which enhanced 
overall herbivore resistance (Pangesti et al. 2016).

Bacteria and fungi that are capable of releasing 
metabolites which trigger plant defence mechanisms 
against pathogens, insect herbivory, and abiotic 
stressors are of great interest in crop management. For 
example, by applying an improved identification and 
inoculation approach, Mueller et al. (2021) reported a 
successful selection for rhizosphere microbiomes that 
confer salt tolerance to the model grass Brachypo-
dium distachyon in greenhouse experiments. Treated 
plants grown under sodium or aluminum salt stress 
showed an increase of 55–205% in seed production. 
Although the identification and testing of individual 
microorganisms or microbial consortia is labori-
ous, its benefits for sustainable agriculture remain a 
promising avenue to tailor genotype- or environment-
specific plant-microbiota interactions leading to ben-
eficial rhizosphere processes. Engineering of such 
root-associated microbiomes with plant-beneficial 
traits like phytohormone production could signifi-
cantly simplify the selection of suitable microorgan-
isms. Currently, multiple approaches to design and 
apply plant-associated microbiomes are discussed and 
the outcomes could indeed prove valuable towards 
more sustainable agriculture (Ke et  al. 2021). Espe-
cially in situ microbiome engineering seems to be a 
promising approach to add, modify, or delete genes of 
interest within microorganisms of a natural commu-
nity. Such a “community editing” tool was recently 
developed which combines a modified CRISPR-Cas 
system to manipulate the genetic potential of bacte-
rial species with targeted sequencing to track the fate 
of these edited cells (Rubin et  al. 2021). Although 
this approach has yet to be tested and applied to 
plant-associated microbiomes, it could potentially 
be used to edit selected microorganisms with traits 



Plant Soil 

1 3
Vol.: (0123456789)

of interest within a rhizosphere community, and thus 
help improve plant health/growth. How such edited 
microorganisms and their host plants fare under field 
conditions and if these approaches indeed translate 
into sustained higher yields needs to be explored in 
future research. Additionally, the consequences of 
introducing genetically modified microorganisms into 
the environment still remain mostly unknown.

Bridging the gap between reductionist approaches 
and ecological studies is one of the avenues we have 
to take towards a better understanding of plant-
soil-microbe belowground interactions for sustain-
able agricultural practices. An elaborate experimen-
tal design was recently employed to assess the plant 
growth-defence relationship as affected by the inter-
action of different microbial communities (Geisen 
et  al. 2022). This study showed that different soil 
microbial groups (bacteria, fungi, protists) did not 
alter plant growth and defense when analyzed indi-
vidually, but that microbial groups and their inter-
actions could alter the relationship between plant 
growth and defence. In addition, these microbiome-
induced effects differed between plant functional 
groups (grasses or forbs) and age of the respective 
plant community, indicating that much remains to be 
uncovered while approaching agriculturally relevant 
settings (Bender 2022; Wei et al. 2020).

Belowground plant-plant interaction

The productivity of species-rich plant communities is 
typically higher than in less diverse, but comparable 
systems (Prieto et al. 2015; Wuest et al. 2021). This 
potential overyielding effect of diverse systems is lev-
eraged in agriculture through the use of intercropping 
or polyculture systems, where different plant species 
or varieties are grown simultaneously on the same 
area of land (Brooker et al. 2015). Intercropping and 
relay intercropping are management practices that 
have potential for sustainable intensification of agri-
culture in low-input as well as high-input farming 
systems (Li et al. 2020a; Wezel et al. 2014). A meta-
analysis of a global dataset on grain-producing inter-
crops showed that higher yield gains were achieved 
in the vast majority of cases, especially in systems 
involving maize, where yield gain was four times 
higher than in polycultures without maize. Overall, 
yield increases of 16% to 29% were found, while 

fertilizer inputs were reduced by 19% to 36% in inter-
cropping systems when compared to monocultures 
of their components under the same management (Li 
et al. 2020a).

Conceptual frameworks exist that help in gaining a 
mechanistic understanding of the processes involved 
in mixture benefits. The mechanisms underlying 
enhanced productivity of diverse systems, involve 
interrelated aspects such as trait complementarity 
with respect to resource use, pathogen susceptibil-
ity and modification of soil quality (Tilman et  al. 
2014). From an ecological perspective, niche dif-
ferentiation leads to complementarity in the use of 
abiotic resources thereby increasing the community-
level resource pool available for biomass produc-
tion. However, resource sharing is another aspect of 
complementarity in plant nutrient acquisition strate-
gies through which root processes of one component 
increase the availability of nutrients that would oth-
erwise be inaccessible to other components of the 
system (Brooker et al. 2015; Homulle et al. 2021; Li 
et  al. 2014). Theoretically, less competition among 
system components also allows for enhanced allo-
cation of resources to biomass production and crop 
yield, although current crop cultivars might not be 
optimised for preferential resource allocation to 
reproductive tissues in polyculture (Chen et al. 2021). 
Furthermore, reduced pathogen pressure is achieved 
if pathogens are specialised and their dispersal 
depends on host density. Evidence for another mecha-
nism of enhanced pathogen resistance in polyculture 
compared to monocrops was recently found in rice 
and durum wheat varietal mixtures of a single species 
(Pelissier et al. 2021). Basal plant immunity was stim-
ulated in varietal mixtures by the presence of healthy 
neighbours and experimental evidence indicated that 
this stimulation was achieved by belowground chemi-
cal signals. Finally, species of different plant func-
tional groups such as legumes, grasses and forbs have 
the potential to enhance soil fertility over time (Furey 
and Tilman 2021). Increased earthworm abundance 
was observed in legume-cereal intercropping, which 
was related to enhanced deposition of organic matter 
in soils (Schmidt et al. 2003). An average 22% yield 
advantage of intercropping was reported in long-term 
experiments along a soil fertility and yield produc-
tion gradient in northwest China (Li et  al. 2021). In 
this study, intercropping systems composed of maize 
grown with wheat, legumes and/or oilseed rape, both, 



 Plant Soil

1 3
Vol:. (1234567890)

overyielding and yield stability, increased over time 
(10–16  years). This productivity effect was partially 
explained by changes in soil properties. Soil organic 
matter and total nitrogen were increased in some 
experimental sites, whereas increased macroaggre-
gate formation in intercrops was observed consist-
ently across experimental sites. Better soil physical 
properties can have potential benefits on water infil-
tration, erosion and nutrient cycling (Six et al. 2004). 
Despite the above-mentioned benefits of intercrops, 
current industrial farming technologies, as used in 
monoculture cultivation, are not suited for application 
in intercropping systems. In monoculture cultivation 
systems the use of diverse and adequate crop rotations 
and cover crops can provide benefits in terms of yield 
increases (Bowles et  al. 2020), soil nutrient avail-
ability (Hallama et al. 2018), soil physical properties 
(reviewed by Griffiths et al. 2020) and soil microbial 
biomass, activity and diversity (Kim et al. 2019). For 
the large-scale implementation of polyculture farming 
practices, custom-made technical solutions have yet 
to be developed.

Experimental evidence suggests that plants inter-
act with heterospecific and conspecific neighbours 
through a range of aboveground and belowground 
signals (Bilas et  al. 2021). Differences in light con-
ditions (Huber et  al. 2021), touch stimulation of 
aboveground organs or physical root contact (Elha-
keem et  al. 2018; Fang et  al. 2013), volatile chemi-
cals (Huang et al. 2019) and chemical stimuli via root 
exudates (Semchenko et al. 2014) trigger responses in 
neighbouring plants on the level of gene expression, 
root architecture, plant growth and biomass alloca-
tion. Plants release compounds derived from primary 
and specialized metabolism into the surrounding soil 
(see also Table 1), where they can act as signals per-
ceived by contemporary neighbours or future genera-
tions (i.e. plant-soil feedback, Mariotte et  al. 2018). 
Due to their chemical complexity and variability, root 
exudates are currently regarded as the main drivers of 
belowground plant-plant interaction with the poten-
tial to provide information about neighbour identity, 
density and physiological state (Wang et  al. 2021b). 
How and to what extent belowground chemical inter-
actions contribute to mixture benefits and overyield-
ing in polycultures is not well understood, especially 
in soils. Here we summarize the to date best-studied 
root exudates for which the molecular mechanisms 
of plant-plant interaction are (partially) known: 

Prominent examples of belowground cues stimulating 
germination of neighbouring plants are strigolactones 
(Floková et al. 2020), which also induce plant-fungal 
interactions (Kretzschmar et al. 2012) and allantonin. 
The latter was also reported to enhance the produc-
tion of ABA, stimulate jasmonic acid signalling path-
ways (Takagi et al. 2016) and to generally play a role 
in mediating plant responses to various environmen-
tal stresses (Kaur et al. 2021). The most studied plant 
derived compounds with phytotoxic properties, gen-
erally referred to as allelochemicals, are sorgoleone, 
benzoxazinoids (e.g. DIBOA, DIMBOA) and momi-
lactone A and B. Sorgoleone accumulates in lipid 
droplets in specialized root hair cells of Sorghum 
bicolor and is known to inhibit germination of small 
seeded weeds, mainly due to its inhibitory effect on 
photosynthetic and mitochondrial electron transport. 
It is also known for the strong inhibition of carot-
enoid biosynthetic pathways and the inhibition of root 
 H+-ATPase which can lead to reduced plant mineral 
and water uptake (Dayan et  al. 2010). Benzoxazi-
noids are shikimic acid-derived specialized metabo-
lites found in most cereal crop species and some dicot 
taxa (Frey et al. 2009). Upon release into soils, they 
are rapidly degraded into the more stable derivatives 
APO, MBOA and AMPO (Fomsgaard et  al. 2004). 
The phytotoxic activity of benzoxazinoids and their 
degradation products, was related to chromatin modi-
fications mediated by inhibition of histone deacety-
lation (Venturelli et  al. 2015). However, it has to be 
noted that benzoxazinoids, as documented for many 
specialized metabolites, fulfil multiple roles within 
the plant body and the rhizosphere (for examples, see 
Table 1). In soils they function as defence compounds 
and as mobilisers of essential micronutrients. How-
ever, benzoxazinoid-iron complexes in soils also can 
attract insects and a recent study showed that whether 
benzoxazinoids act as defence chemicals or attract-
ants is context-dependent and strongly influenced by 
soil chemistry (Hu et al. 2021). The diterpens momi-
lactone A and B are the major allelochemicals found 
in rice, which are synthesised when allelopathic rice 
cultivars grow in proximity to heterospecific neigh-
bours or other rice cultivars. The current knowledge 
on momilactones has recently been reviewed by 
Serra Serra et  al. (2021). The authors conclude that 
while detailed knowledge on the biosynthetic path-
way of momilactones biosynthesis has been obtained, 
the mechanisms involved in induction, release and 
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phytotoxicity momilactone are not well understood 
and warrant further investigations. The plant-derived 
compounds loliolide and jasmonic acid (JA) are 
found in the rhizospheres of most plants. These ubiq-
uitous chemicals have been shown to elicit defensive 
responses in neighbours: enhanced momilactone B 
biosynthesis was observed in rice and the expres-
sion of genes involved benzoxazinoid biosynthesis 
in wheat and rice was significantly upregulated upon 
exposure to loliolide and JA (Kong et al. 2018).

This handful of examples highlights the diversity 
and the complexity of compounds and mechanisms 
involved in plant-plant interaction. Despite our pro-
gress in identifying biologically active root exudates 
and deciphering the related responses in conspecific 
and/or heterospecific neighbours, we are still a long 
way from having a comprehensive picture of all rel-
evant agents and involved mechanisms. One single 
plant species synthesises over 5000 metabolites and 
an estimated 100000 to 1 million different com-
pounds are to be found in the entire plant kingdom 
(Alseekh and Fernie 2018). Over 1000 features are 
commonly detected in root exudate samples, of which 
approximately 100 compounds can be routinely iden-
tified using contemporary metabolomic profiling 
approaches (van Dam and Bouwmeester 2016). Fur-
thermore, plant-plant interaction studies are not trivial 
and experiments have to be carefully designed (Bilas 
et al. 2021). Future research also needs to reveal the 
influence of rhizosphere properties, including the 
rhizosphere microbiome, on the transmission and 
modulation of such chemical cues. Therefore, much 
remains to be uncovered in terms of (i) identification 
of new bioactive compounds involved in belowground 
plant-plant interactions, (ii) describing their dynamics 
in soil (mobility, dissipation time, effective concen-
trations) and related to this (iii) the biotic and abiotic 
functionality of root-released compounds in relation 
to soil chemistry. These insights will provide a more 
complete picture allowing for the spatiotemporally 
optimal management of species and varietal interac-
tions in polycultures under future climate scenarios.

Conclusion

Rhizosphere processes are governed by plant phe-
notypic traits including internal water and nutrient 
use efficiency, systemic and local immune responses 

as well as root architecture and root resource acqui-
sition efficiency. In turn, associated belowground 
plant–microbe-soil interactions can significantly 
affect the phenotypic plasticity of plants. Combin-
ing in-depth knowledge of above- and belowground 
plant traits will therefore allow for more informed 
decisions regarding sustainable agricultural practices 
and plant breeding strategies. Next to root architec-
ture and root resource acquisition efficiency, root 
exudates are considered key drivers of interactions 
at the plant–microbe-soil interface. Consequently, 
a major focus currently lies on deciphering exudate 
diversity and linking individual exudates to processes 
occurring in the rhizosphere. Especially rhizosphere-
associated microorganisms represent a fascinat-
ing resource to sustain plant growth and potentially 
increase the stress resistance and overall productiv-
ity of their host plant. The rhizosphere microbial 
community can either be manipulated by selecting 
specific genotypes with exudation traits that trigger 
the establishment of symbiosis and/or favour certain 
microbial taxa or by applying inoculation solutions 
either directly to the soil or as plant seed coatings. 
To date, limitations surrounding inoculation applica-
tions on a large scale, including a high cost-to-benefit 
ratio, country-dependent legal and regulatory affairs, 
as well as farmer’s scepticism in the face of lacking 
practical evidence diminish the promising potential 
of PGPR in agricultural systems. Nevertheless, novel 
approaches such as genome-editing of single bio-
inoculants, whole rhizosphere-associated communi-
ties, or microorganisms in conjunction with a spe-
cific host plant are under development and could turn 
the tide towards a more effective implementation of 
microbe-assisted strategies in sustainable agriculture. 
At the same time, however, it is imperative to gain a 
better understanding of potential ecological conse-
quences of introducing new microbiota into environ-
mental systems.

Considering the current unsolved challenges of 
manipulating the rhizobiome and the involved costs, 
an alternative and universally applicable approach 
would be to breed for crops with well-adapted plant 
traits including root and rhizosphere properties as an 
extended (belowground) phenotype. While the idea 
is promising, following through will require a great 
scientific effort that needs to include mechanistic and 
applied studies as well as highly differentiated, inter-
disciplinary approaches that are tailored to different 
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species/genotypes grown in several environmental 
conditions. While significant progress in understand-
ing rhizosphere processes has been made in the last 
decades, past research often worked with simplified 
or artificial systems to break down the great com-
plexity of the plant–microbe-soil environment and 
allow the identification of underlying mechanisms. 
Experiments using simplified systems were and still 
are crucial for stepwise elucidation of belowground 
interactions, however our advances in both, in-depth 
knowledge and experimental techniques, now ena-
ble us to conduct more holistic studies integrating a 
much wider range of relevant parameters. Results 
from these studies will be crucial in the future to fur-
ther our understanding of rhizosphere processes, as a 
few pioneer studies already showed that conclusions 
drawn from simplified systems might not hold true 
when studying complexes environments.

In summary, we suggest that including root traits 
and related belowground plant-soil-microbe interac-
tions in our breeding efforts will help to select crops 
resilient to abiotic and biotic environmental stresses, 
like drought, flooding, poor nutrient availability, pest 
and pathogen attacks. In light of a growing world 
population and less predictable climatic conditions, 
we need to find solutions for crop production in a less 
resource-demanding manner which is also less detri-
mental to the environment. By focussing on a better 
understanding of individual plant traits, in conjunc-
tion with the associated microbiome and soil phys-
icochemical properties as well as climatic conditions, 
we believe that it will be possible to further agroeco-
logical innovations in crop and soil management to 
increase soil health and reduce the footprint of agri-
cultural practices.
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